Симметрия природы
Страница 2

В основе определения симметрии лежит понятие равенства при преобразовании. Однако физически (и математически) объект может быть равен себе по одним признакам и не равен по другим. Например, распределение ядер и электронов в крис­талле антиферромагнетика можно описать с помощью обычной пространственной симметрии, но если учесть распределение в нем магнитных моментов, то обычной, классической симмет­рии уже недостаточно. К подобного рода обобщениям симмет­рии относятся антисимметрия и цветная симметрия. В антисимметрии в дополнение к трем пространственным пере­менным добавляется четвертая ±1, что можно истолковать как изменение знака (антиравна). Это так называемая обобщенная симметрия, используемая в описании, например, магнитных структур.

Другое обобщение симметрии — симметрия подобия — бу­дет определено, когда равенство частей фигуры заменяется их подобием , криволинейная симметрия, статисти­ческая симметрия, вводимая при описании структуры разупорядоченных кристаллов, твердых растворов, жидких кристаллов и т. п.

В физике элементарных частиц симметрия широко исполь­зуется в связи с идеей изотопической инвариантности, предло­женной В. Гейзенбергом для описания взаимодействий протона и нейтрона. Считается, что изотопическая симметрия описы­вает точное свойство инвариантности сильных взаимодействий, хотя получаемые из нее соотношения в действительности все­гда нарушаются на уровне точности порядка нескольких про­центов.

Унитарная симметрия в качестве обобщения изотопичес­кой инвариантности впервые появилась в связи с моделью сим­метрии Сакаты, в которой все адроны считались составленными из трех основных электрических частиц — протона, нейтрона и d-гиперона.

Унитарная симметрия осуществляется с худшей точностью, чем изотопическая, но это не мешает получать ряд интересных соотношения между физическими величинами (например, фор­мула масс Гелл-Манна—Окубо, предсказавшая существование и массу Q-гиперона).

Еще одно приложение группы симметрии к физике адронов — это цветовая симметрия. Согласно определению цвето­вой симметрии каждый кварк имеет три возможных состояния, различающихся по квантовому числу, названному цветом, а пре­образование цветового состояния можно производить незави­симо в разных пространственно-временных точках. С этим связано существование глюонного поля, имеющего восемь цве­товых состояний. Взаимодействие кварков с этим полем явля­ется микроскопической основой сильных взаимодействий. Оно описывается квантовой хромодинамикой — калибровочной квантовой теорией поля типа Янга—Миллса. Кроме того, цве­товая симметрия не нарушается никакими известными в насто­ящее время взаимодействиями, а согласно теореме Нетер следует, что в стандартной модели сильного и электрослабого взаимодействий возникает сохранение барионного и лептонно-го чисел.

Страницы: 1 2 


Популярные статьи:

Характеристика класса однодольных и его основные семейства в Средней полосе
Основные семейства Класс liliopsida – однодольные Семейство Liliacea – Лилейные Паспорт семейства: Родов – 10 (8), видов – 750 (75) Цветок - *P3+3 A3+3 G(3) ,завязь верхняя Распространение – умеренные и субтропические области Северн ...

Гипотезы появления человека на Земле
Попытки понять и объяснить, как возник человек, отражены в верованиях, легендах, сказаниях самых разных народов и племен. В решении этой проблемы особенно остро проявляется борьба материалистических и идеалистических взглядов. Долгое врем ...

Ингибиторная активность флавоноидов
Флавоноиды ингибируют процессы ПОЛ как на стадии инициации, взаимодействуя с радикалами О- и ОН*, так и на стадии продолжения цепи, выступая донорами атомов водорода для перекисных радикалов. Образующиеся при этом радикалы флавоноидов акт ...