Симметрия природыСтраница 2
В основе определения симметрии лежит понятие равенства при преобразовании. Однако физически (и математически) объект может быть равен себе по одним признакам и не равен по другим. Например, распределение ядер и электронов в кристалле антиферромагнетика можно описать с помощью обычной пространственной симметрии, но если учесть распределение в нем магнитных моментов, то обычной, классической симметрии уже недостаточно. К подобного рода обобщениям симметрии относятся антисимметрия и цветная симметрия. В антисимметрии в дополнение к трем пространственным переменным добавляется четвертая ±1, что можно истолковать как изменение знака (антиравна). Это так называемая обобщенная симметрия, используемая в описании, например, магнитных структур.
Другое обобщение симметрии — симметрия подобия — будет определено, когда равенство частей фигуры заменяется их подобием , криволинейная симметрия, статистическая симметрия, вводимая при описании структуры разупорядоченных кристаллов, твердых растворов, жидких кристаллов и т. п.
В физике элементарных частиц симметрия широко используется в связи с идеей изотопической инвариантности, предложенной В. Гейзенбергом для описания взаимодействий протона и нейтрона. Считается, что изотопическая симметрия описывает точное свойство инвариантности сильных взаимодействий, хотя получаемые из нее соотношения в действительности всегда нарушаются на уровне точности порядка нескольких процентов.
Унитарная симметрия в качестве обобщения изотопической инвариантности впервые появилась в связи с моделью симметрии Сакаты, в которой все адроны считались составленными из трех основных электрических частиц — протона, нейтрона и d-гиперона.
Унитарная симметрия осуществляется с худшей точностью, чем изотопическая, но это не мешает получать ряд интересных соотношения между физическими величинами (например, формула масс Гелл-Манна—Окубо, предсказавшая существование и массу Q-гиперона).
Еще одно приложение группы симметрии к физике адронов — это цветовая симметрия. Согласно определению цветовой симметрии каждый кварк имеет три возможных состояния, различающихся по квантовому числу, названному цветом, а преобразование цветового состояния можно производить независимо в разных пространственно-временных точках. С этим связано существование глюонного поля, имеющего восемь цветовых состояний. Взаимодействие кварков с этим полем является микроскопической основой сильных взаимодействий. Оно описывается квантовой хромодинамикой — калибровочной квантовой теорией поля типа Янга—Миллса. Кроме того, цветовая симметрия не нарушается никакими известными в настоящее время взаимодействиями, а согласно теореме Нетер следует, что в стандартной модели сильного и электрослабого взаимодействий возникает сохранение барионного и лептонно-го чисел.
Популярные статьи:
Механизм сцепления
Гены, локализованные в одной хромосоме, называют группой сцепления. Число групп сцепления соответствует гаплоидному набору хромосом.
Если две сцепленные пары генов находятся в одной гомологичной паре хромосом, то генотип запишется .
Про ...
Особые типы интронов: группа II.
Интроны группы II распространены менее широко. Они обнаружены в двух митохондриальных генах дрожжей, кодирующих одну из субъединиц цитохромоксидазы и цитихром b; интересно, что в этих генах присутствуют также интроны группы I.
Сплайсинг ...
Линька
Линяет косуля дважды в году – весной и осенью. Сезонная изменчивость окраски волосяного покрова четко выражена. Весенняя линька начинается в конце марта и заканчивается в конце мая. Продолжительность ее 70–80 дней. Пик весенней линьки, ко ...