Роль PH среды на про- и антиоксидантную активность
дигидрокверцетина и его комплекса ДГК-FE3+Страница 1
Использование данной модельной системы: люминол-H2O2-катализатор, не является оптимальной для изучения про/антиоксидантых свойств гидрофобных соединений вследствие слабой растворимости в воде и высокого коэффициента распределения октанол-вода (для дигидрокверцетина LogP =1 .82±0.41). Поэтому в дальнейшем нами была использована модель окисления лецитина под действием кислорода воздуха и пероксида водорода.
В процессе реакции ДГК с активными формами кислорода (АФК) образуются промежуточные формы обладающие как про- так и антиоксидантной активностью (схема 1). Как видно из схемы под действием АФК наблюдается отрыв протона с образованием семихиноновой формы ДГК (I). Стабильность данной формы выше в условиях высоких концентраций ДГК и при высоких значениях pH, что приводит к образованию димерных форм семихинонов с распределением заряда. Дальнейшее окисление под действием АФК приводит к образованию хинона (II), который так же частично образуется в процессе реакции диспропорционирования. Хиноновая и семихиноновая формы проявляют прооксидантный эффект и способны генерировать АФК или отрывать по гомолитическому разрыву слабые водородные связи, преимущественно от гидроксильных групп. При низких значениях pH, окисление ДГК направляется по другому пути с образованием стабильных феноксильных радикалов, способных проявлять как прооксидантные, так и антиоксидантные свойства (III, IV).
Схема 1. Окислительно-восстановительные превращения дигидрокверцетина
Образующиеся феноксильные или генерируемые опосредовано через хиноновую/семихиноновую формы радикалы способны участвовать в реакции с липидом с образованием различных карбоксильных соединений а так же увеличение непредельных групп в липиде (схема 2). Как видно из схемы гомолитических отрыв C-H связи возможен только в присутствие высокоэнергитических гидроксил радикалов. Дальнейшие стадии образования спиртовой группы и дегидратация может протекать в присутствии более слабых окислителей. Дальнейшее окисление, сопровождающееся разрывом двойных связей и окислением их до соответствующих карбонильных соединений, протекает в присутствии пероксидов и катализируется в присутствии металлов переменной валентности, способных образовывать π-комплекс.
Схема 2. Основные пути формирования непредельных групп в липиде и образование альдегидов в процессе окисления
Нами было обнаружено, что в процессе окисления липида в присутствии ДГК, наблюдается накопление всех карбонильных производных, причем образование монокарбонильных соединений существенно ингибируется с ростом концентрации ДГК, относительно контрольного образца липида (данные не представлены). Тем не менее, накопление основного продукта, малонового диальдегида, от концентрации ДГК в липиде, имеет сложную зависимость (рис. 17 a).
Максимальное накопление малонового диальдегида в присутствии ДГК приходилось на 6-8 сутки, при этом доза зависимое ингибирование накопления МДА наблюдалось только в период до 4-х суток. Изменив систему окисления липида, добавив в качестве катализатора ПОЛ ионы металла переменной валентности, можно попытаться ответить на вопрос - является ли подобное изменение следствием прооксидантного эффекта ДГК.
Введение в образцы липида соли двухвалентного железа способствуют ускорению процесса распада гидропероксидов, а так же катализируют реакцию окисления непредельных связей в присутствии перекисей. В данном случае основным повреждающим агентом является образующиеся гидроксил радикалы. Предотвратить реакцию гидроксил-радикала с липидом невозможно, но возможно связать ионы железа, благодаря чему скорость образования радикалов существенно снизится.
В присутствии 20 мкМ сульфата жалеза (II) существенно изменялся процесс накопления карбонильных соединений. Доза зависимое ингибирование процесса накопления карбонильных соединений сохранялось до концентрации ДГК в системе 1 мг/мл, и далее наблюдалось существенное увеличение концентрации монокарбонильных соединений и малонового диальдегида на 50 и 100% соответственно (рис. 17 b).
Аналогичная “седловидная” форма зависимости накопления МДА от концентрации ДГК с течением времени сохраняется при концентрации железа 200 мкМ. Дальнейшее же увеличение концентрации железа приводило к смещению минимума седла в сторону больших концентраций ДГК и появлению в области концентрации ДГК 10 мкг/мл пика соответствующему наивысшей точки накопления МДА в системе. Таким образом, наблюдается наличие концентрационных границ для ДГК, за пределами которых данный флавоноид проявляет прооксидантный эффект, но по разным механизмам. По-видимому, при низкой концентрации ДГК (10 мкг/мл) и высокой концентрации железа (более 2 мМ) наблюдается накопление семихинона, способного проявлять прооксидантный эффект. При определенном соотношении ДГК/Fe2+прооксидантный эффект наступал в районе высоких концентраций ДГК, что по-видимому связано с цикличным процессом окисления-восстановления железа, при котором окисленное железо (III) образующееся в процессе расщепления пероксидов, вновь восстанавливается до активного двухвалентного состояния.
Популярные статьи:
История формирования учения о типах высшей нервной
деятельности
Наиболее древнейшими являются гуморальные теории, связывающие темперамент со свойствами тех или иных жидких сред организма. Так, Гиппократ считал, что преобладание горячей крови (sangvis) делает человека энергичным и решительным сангвиник ...
Слух, обоняние и осязание
Хороший слух нужен охотнику не меньше, чем зрение, и уши кошки отвечают всем требованиям. Кроме того, кошка обладает превосходным обонянием, хотя и не полагается на него во время охоты. Нос служит ей для того, чтобы обнюхивать еду и иссл ...
Трансформация растений
при переходе из водной среды в воздушную и "стирание" гена
Сходство между модификациями, происходящими в химических веществах и в живых организмах, становится еще более очевидным при внимательном анализе изменений, которые претерпевают растения при выходе из воды на сушу.
У многих видов растений ...