Законы сохраненияСтраница 2
Широко известный закон, математически выраженный Эйнштейном формулой Е=пдс2, относится к законам сохранения. Он является фундаментальным, определяющим границы применимости классических представлений при описании свойств микромира. Он позволил не только обосновать периодическую систему элементов, но и объяснить насыщенность электронных оболочек, свойства пара- и диамагнетиков, квантовую химию и др., построить современную теорию элементарных частиц и квантовую теорию поля. А на базе квантовой механики затем создали целый ряд современных технологий, микроэлектронику, лазеры, ЭВМ, новые материалы.
В 1845 г. Л. Майер (1820 -1895) издал работу "Органическое движение в связи с обменом веществ", где последовательно и схематично изложил учение о сохранении и превращении энергии. Суть этого учения в следующем: в Природе есть весомая и непроницаемая материя, а остальное — силы (энергия). Движение есть сила, оно измеряется величиной "живой силы" (кинетической энергии). Поэтому возможны только превращения сил. Источником всех сил на Земле является Солнце. Жизнедеятельность живых организмов рассматривается с точки зрения превращения форм энергии. Его метод: разница удельных теплоемкостей приравнивается работе (Ср - Cv = R), где R — соотношение теплоемкостей и газовой постоянной. Уравнение носит имя Майера, он же получил экспериментальным путем механический эквивалент теплоты 4,19 Дж/ккал.
Д. Джоуль и, независимо от него, X. Ленц (1804-1865) открыли закон — количество теплоты, выделенной током, пропорционально квадрату силы тока и сопротивлению. Q = I2 R.
Закон сохранения и превращения энергии иногда называют первым началом термодинамики.
В большинстве химических и физических процессов изменение массы недоступно измерению, а всеобщий закон сохранения массы, применяемый от астрономии до зоологии, был установлен в разных науках по отдельности. Таким образом, в общем случае была разработана единая методика определения энергоемкости веществ на основе сгорания веществ в чистом кислороде, позволяющая без особых потерь передать теплоту воде и измерить ее.
В 1822 г. французский математик Ж. Б. Фурье (1768-1830), исследуя тепловые процессы, вывел дифференциальные уравнения теплопроводности (закон Фурье) и разработал методы интегрирования в работе "Аналитическая теория тепла", используя разложение функций в тригонометрический ряд — ряд Фурье. Так вошли в математическую и теоретическую физику ряды Фурье и интеграл Фурье.
Русский академик Г. И. Гесс (1802 - 1850), исследуя химические реакции, в своем законе связывал сохранение и превращение вещества, включая тепловое, а следовательно, подтвердил законы сохранения и превращения энергии.
Вслед за Джоулем, Томсоном (лордом У. Кельвином) (1824 - 1907) и Г. Гельмгольцем (1821 - 1894), Р. Клаузиус (1822 - 1888) применил закон сохранения и превращения энергии к электрическим явлениям (1852), обратив внимание на то, что между затраченной работой и полученной теплотой наблюдается постоянство соотношения только при циклических процессах — тело периодически возвращается в исходное состояние.
Томсон применил этот закон к световым явлениям, химическим процессам и жизнедеятельности живых организмов, а затем к электрическим и магнитным явлениям, установив выражение для энергии магнитного поля в виде интеграла Фурье, взятого по объему.
Итак, закон сохранения и превращения энергии приобрел права всеобщего закона Природы, объединяющего живую и неживую Природу в виде первого начала термодинамики — сохраняется энергия (а не теплота).
Под законами сохранения, наряду с сохранением полной энергии, понимают сохранение импульса и момента импульса — они определяют динамику и галактик, и элементарных частиц, а также ряд других законов сохранения, например закон сохранения странности и некоторых квантовых чисел.
Различают два вида энергии: потенциальную и кинетическую.
Понятие потенциальной энергии тела вводится для сил, работа которых определяется только положением начальной и конечной точек траектории. Такие силы называют консервативными. Работа неконсервативных сил зависит от формы траектории, например, силы трения.
Кинетическая энергия — это энергия массы, движущейся под действием неконсервативных сил, а поэтому правильнее говорить о ее приращении, которое равно работе всех сил, приложенных к телу. Это могут быть силы упругости, тяготения, трения и т. д.
Популярные статьи:
Анализ деятельности аппарата Гольджи в клетке. Анализ деятельности аппарата
Гольджи в клетке
Лизосомы
– это маленькие, окруженные одинарной мембраной пузырьки. Они отпочковываются от аппарата Гольджи и, возможно, от эндоплазматического ретикулума. Лизосомы содержат разнообразные ферменты, которые расщепляют крупные молекулы, в ч ...
Гениальный человек
«Уотсон – гений, поэтому он всегда будет возмущать обывателей, – говорит академик Лев Кисилев. – Он все время примерно на 20 лет опережает ситуацию. У него так голова устроена, он ничего с собой сделать не может». Словно в подтверждение с ...
Человек в биосфере
Антропогенез (происхождение человека)
Палеонтология (наука об ископаемых животных и растениях)
Приматы (отряд млекопитающих, включающий обезьян и человека)
Основные этапы эволюции рода Homo и его предшественников (стадиальная концепция ...