Законы сохраненияСтраница 2
Широко известный закон, математически выраженный Эйнштейном формулой Е=пдс2, относится к законам сохранения. Он является фундаментальным, определяющим границы применимости классических представлений при описании свойств микромира. Он позволил не только обосновать периодическую систему элементов, но и объяснить насыщенность электронных оболочек, свойства пара- и диамагнетиков, квантовую химию и др., построить современную теорию элементарных частиц и квантовую теорию поля. А на базе квантовой механики затем создали целый ряд современных технологий, микроэлектронику, лазеры, ЭВМ, новые материалы.
В 1845 г. Л. Майер (1820 -1895) издал работу "Органическое движение в связи с обменом веществ", где последовательно и схематично изложил учение о сохранении и превращении энергии. Суть этого учения в следующем: в Природе есть весомая и непроницаемая материя, а остальное — силы (энергия). Движение есть сила, оно измеряется величиной "живой силы" (кинетической энергии). Поэтому возможны только превращения сил. Источником всех сил на Земле является Солнце. Жизнедеятельность живых организмов рассматривается с точки зрения превращения форм энергии. Его метод: разница удельных теплоемкостей приравнивается работе (Ср - Cv = R), где R — соотношение теплоемкостей и газовой постоянной. Уравнение носит имя Майера, он же получил экспериментальным путем механический эквивалент теплоты 4,19 Дж/ккал.
Д. Джоуль и, независимо от него, X. Ленц (1804-1865) открыли закон — количество теплоты, выделенной током, пропорционально квадрату силы тока и сопротивлению. Q = I2 R.
Закон сохранения и превращения энергии иногда называют первым началом термодинамики.
В большинстве химических и физических процессов изменение массы недоступно измерению, а всеобщий закон сохранения массы, применяемый от астрономии до зоологии, был установлен в разных науках по отдельности. Таким образом, в общем случае была разработана единая методика определения энергоемкости веществ на основе сгорания веществ в чистом кислороде, позволяющая без особых потерь передать теплоту воде и измерить ее.
В 1822 г. французский математик Ж. Б. Фурье (1768-1830), исследуя тепловые процессы, вывел дифференциальные уравнения теплопроводности (закон Фурье) и разработал методы интегрирования в работе "Аналитическая теория тепла", используя разложение функций в тригонометрический ряд — ряд Фурье. Так вошли в математическую и теоретическую физику ряды Фурье и интеграл Фурье.
Русский академик Г. И. Гесс (1802 - 1850), исследуя химические реакции, в своем законе связывал сохранение и превращение вещества, включая тепловое, а следовательно, подтвердил законы сохранения и превращения энергии.
Вслед за Джоулем, Томсоном (лордом У. Кельвином) (1824 - 1907) и Г. Гельмгольцем (1821 - 1894), Р. Клаузиус (1822 - 1888) применил закон сохранения и превращения энергии к электрическим явлениям (1852), обратив внимание на то, что между затраченной работой и полученной теплотой наблюдается постоянство соотношения только при циклических процессах — тело периодически возвращается в исходное состояние.
Томсон применил этот закон к световым явлениям, химическим процессам и жизнедеятельности живых организмов, а затем к электрическим и магнитным явлениям, установив выражение для энергии магнитного поля в виде интеграла Фурье, взятого по объему.
Итак, закон сохранения и превращения энергии приобрел права всеобщего закона Природы, объединяющего живую и неживую Природу в виде первого начала термодинамики — сохраняется энергия (а не теплота).
Под законами сохранения, наряду с сохранением полной энергии, понимают сохранение импульса и момента импульса — они определяют динамику и галактик, и элементарных частиц, а также ряд других законов сохранения, например закон сохранения странности и некоторых квантовых чисел.
Различают два вида энергии: потенциальную и кинетическую.
Понятие потенциальной энергии тела вводится для сил, работа которых определяется только положением начальной и конечной точек траектории. Такие силы называют консервативными. Работа неконсервативных сил зависит от формы траектории, например, силы трения.
Кинетическая энергия — это энергия массы, движущейся под действием неконсервативных сил, а поэтому правильнее говорить о ее приращении, которое равно работе всех сил, приложенных к телу. Это могут быть силы упругости, тяготения, трения и т. д.
Популярные статьи:
Классификация рас по Деникеру
Деникер создал классификацию человеческих рас (1900), в которой впервые был последовательно проведён принцип выделения антропологических типов исключительно по физическим признакам (см. ниже). Серьёзным недостатком этой классификации явля ...
История открытия динозавров
Вероятно, археологи были потрясены, когда обнаружили при раскопках громадные кости динозавров. Теперь мы знаем: многие ящеры были безобидными животными гигантских размеров, которые мирно жили в лесах, питаясь травой. Некоторые динозавры б ...
Факторы окружающей среды
- Температура окружающей среды
- Сила тяжести (гравитация)
- Уровень инсоляции (солнечная радиация)
- Влажность
- Газовый состав окружающего воздуха
- Геомагнитные поля
- Биологические факторы, внутривидовые и межвидовые взаимодейст ...