Законы сохраненияСтраница 1
Количество законов Природы велико, но они неравнозначны по сфере применения.
Наиболее многочисленны законы, описывающие электрические явления, сформулированные на основе обобщения экспериментальных данных. Часто они носят приближенный характер, и область их применения достаточно узка. Например, закон Гука — для области небольших деформаций, то есть до достижения предела текучести твердого тела, иначе до границы, после которой деформации становятся необратимыми после снятия нагрузки. Закон Гука выражает внешний наблюдаемый эффект. Внутренняя же природа явления в том, что атомы и молекулы состоят из электрически заряженных частиц, силы притяжения и отталкивания в которых уравновешены. Деформация нарушает их внутренние электрическое равновесие, которое после снятия нагрузки восстанавливается. Таким образом, силы упругости по сути электромагнитные силы или по существу чисто электрический эффект; закон валентности при образовании химических соединений определяет создание общих электронных пар, то есть внутренне это тоже электрический эффект.
Однако для описания внешнего поведения системы вполне можно не прибегать к сложным уравнениям электродинамики. Аналогично в термодинамике или химических законах не рассматривают квантовые внутренние эффекты, объясняющие поведение термодинамической или химической системы изнутри.
Такие законы являются частными.
Если же мы абстрагируемся от внешнего эффекта и раскроем его внутренний механизм, то целый ряд на первый взгляд не связанных явлений объединится в классы или системы. Эти системы явлений можно будет описать единым законом, называемым фундаментальным.
В классической механике их четыре: законы Ньютона и всемирного тяготения. Но и они действуют лишь в области макромира. Так, для микрочастиц невозможно указать точно значения ускорений и сил, то есть теряется сам смысл понятий, используемых в формулировке закона.
Другое дело законы сохранения. Они не теряют своего смысла при замене одной системы на другую, то есть базируются на эвристическом принципе, позволяющем независимо от накопленного опыта отбирать более совершенные законы. Они могут и не давать полного описания явлений, а лишь накладывать определенные запреты на их реализацию для построения новых теорий. Тогда их называют принципами.
Если и дальше обобщать фундаментальные законы, еще глубже уходя во внутреннюю структуру: от атома к элементарным частицам, а затем и к их структуре, и на базе этого строить теории и выводить законы, то последние и будут называться универсальными. Например, теория Великого объединения взаимодействий пытается объединить четыре известных взаимодействия, то есть свести их к одной Природе. Для таких законов характерен элемент симметрии. В первом приближении под симметрией понимают допущение любых преобразований системы, а структура математической формулировки закона при этом не меняется. Чтобы понять, что такое симметрия физического закона, нужно дать этому определение в математических терминах. Для исследования симметрии предметов необходимо рассмотреть множество всех перемещений пространства и выделить те из них, при которых данный предмет отображается сам на себя. Множество таких преобразований называется группой симметрии. Например, прямоугольник. Его симметричность выявляется при преобразовании пространства, два зар-кальных отражения относительно двух осей симметрии, поворот плоскости на 180° и тождественное преобразование плоскости оставляют фигуру неизменной. Группа его симметрии содержит четыре элемента.
Можно расширить понятие симметрии и назвать группой симметрии такие преобразования пространства и времени, при которых форма записи уравнений или комбинации физических величин остаются неизменными. Именно в этом смысле говорят о симметрии физических законов.
Законы сохранения распространяются на весь диапазон физических явлений: от микро- до макротел.
Закон — внутренняя, существенная и устойчивая связь явлений, обусловливающая их упорядоченное изменение.
Закономерность — совокупность взаимосвязанных законов, обеспечивающих устойчивую тенденцию или направленность в изменениях системы.
Законы сохранения — физические закономерности, согласно которым численные значения некоторых физических величин не изменяются со временем.
Популярные статьи:
Скелет головы
Череп – скелет головы. Различают два отдела черепа: мозговой и лицевой. Мозговой отдел является вместилищем головного мозга.
У новорожденного черепные кости соединены друг с другом мягкой соединительнотканной перепонкой. Эта перепонка ос ...
Механизмы влияния производных адамантана на индуцируемую агрегацию
тромбоцитов человека in vitro
К настоящему моменту в литературе отсутствует информация о возможных механизмах влияния подобных соединений на функционирование тромбоцитарных рецепторов. Влияние веществ на скорость агрегации тромбоцитов может быть обусловлено их способн ...
Показатели селективности
промысла и рыболовства
Пpи оценке влияния селективности pыболовства на состояние запасов пpомысловых pыб и pезультаты пpомысла обычно пpинимают во внимание селективность оpудия лова, не учитывая или считая несущественной пpи этом селективность пpомысла, обуслов ...