Законы сохранения
Страница 3

Связь симметрии пространства и законов сохранения была изложена немецким математиком Э. Нетер (1882-1935) в фор­ме фундаментальной теории: однородность пространства и времени влечет законы сохранения импульса и энергии, а изот­ропность пространства — сохранения момента импульса и энер­гии.

Установление связи между свойствами пространства и вре­мени и законами сохранения выражается в вариационном прин­ципе.

Закон изменения полной энергии

Сумму кинетической и потенциальной энергий называют пол­ной энергией тела. Она включает кинетическую энергию, кото­рая всегда положительна, и потенциальную, которая может быть как положительной, так и отрицательной. Таким образом, пол­ная энергия может быть любого знака и равна нулю. Один из важнейших законов механики гласит: приращение полной энер­гии тела равно работе неконсервативных сил.

Закон сохранения полной энергии

Если неконсервативные силы отсутствуют или их работа рав­на нулю, то полная энергия не меняется, то есть имеет одно и то же значение в любой момент времени.

Закон сохранения полной энергии системы тел

Если в замкнутой системе действуют силы трения, то пол­ная энергия системы уменьшается, что не означает ее исчезно­вения. Наличие трения приводит к увеличению кинетической энергии движения молекул и потенциальной энергии их взаи­модействия за счет уменьшения полной энергии. Сохранение полной энергии замкнутой системы, равной сумме полной и внутренней энергий, является частным случаем всеобщего за­кона сохранения и превращения энергии всех форм движения материи.

Закон сохранения энергии в применении к тепловым процес­сам выражен в первом начале термодинамики. При этом в многоатомных молекулах кинетическая энергия складывается из трех независимых частей — энергии движения молекулы как целого, вращательной энергии и колебательной энергии ядер.

Передача тепла возможна, кроме трения, теплопроводнос­тью, конвенцией, излучением.

С законами сохранения энергии тесно связан закон про­порциональности, или взаимосвязи массы и энергии (эта связь совершенно универсальна): изменение массы тела прямо пропорционально изменению полной энергии или приращению ки­нетической и собственной (потенциальной) энергии.

Закон сохранения импульса

Данный закон представляет собой результат симметрии от­носительно параллельного переноса исследуемого объекта в пространстве, суть — однородность пространства. Так, в пус­том пространстве импульс сохраняется во времени, а при нали­чии взаимодействия скорость его изменения определяется суммой приложенных сил. В случае системы материальных то­чек, их полный импульс определяется как векторная сумма всех импульсов, составляющих систему материальных точек.

Системы, на которые не действуют внешние силы, называ­ют замкнутыми. Основная масса законов сформулирована имен­но для таких систем.

Закон сохранения момента импульса

Он являет собой пример симметрии относительно поворота в пространстве (изотропность пространства).

Этот закон есть следствие неизменности мира по отноше­нию к его поворотам в пространстве.

Это свойство используется, в частности, в гироскопах и дру­гих навигационных системах.

Все эти законы сохранения не только фундаментальны, но и универсальны в пределах микро-, макро- и мегамиров.

Закон сохранения заряда

Этот закон есть следствие симметрии относительно замены описывающих систему параметров на их комплексно-сопряжен­ные значения.

Релятивистская инвариантность заряда и закон сохранения заряда изолированной системы взаимно обусловливают друг друга и принимаются в качестве исходного положения класси­ческой электродинамики.

Закон сохранения четности

Этот закон подразумевает симметрию относительно инвер­сии (зеркального отражения).

Оба закона действуют в микро- и мегамирах для элементар­ных частиц.

Закон сохранения энтропии

Этот закон есть следствие симметрии относительно обраще­ния времени.

В настоящее время иных фундаментальных законов сохра­нения четко формулировать не представляется возможным. Однако это не означает, что число их ограниченно.

Страницы: 1 2 3 


Популярные статьи:

Размножение
Спаривание в основном приходится на февраль. В выводке бывает от 2 до 15 детенышей. Для выведения потомства роют глубокие норы или занимают чужие. Беременность 44–58 дней, лисят обычно бывает 4–6, они питаются молоком до 1–1,5 месяца и ст ...

Строение и размножение водорослей
Водоросли исключительно разнообразны по своему строению. Таллом их может быть представлен одной клеткой или многими, составляющими колонии и многоклеточные организмы. Среди них имеются как крупные, часто напоминающие по внешним очертаниям ...

Органы размножения самок
Органы размножения самки птиц служат для воспроизведения потомства, что обеспечивает сохранение вида. Функция органов размножения связана с функцией других органов и регулируется нейрогуморальными механизмами. Органы размножения самки пт ...